Nest-dwelling Mites of Selected Common Bird Species in Sri Lanka

Vidyani S. Kulatunga *

Department of Zoology and Environment Sciences, University of Colombo, Sri Lanka.

Wayne Knee

Canadian National Collection of Insects, Arachnids and Nematodes, Agriculture and Agri-Food Canada, Ottawa, Canada.

Inoka C. Perera

Department of Zoology and Environment Sciences, University of Colombo, Sri Lanka.

P. Nihal Dayawansa

Department of Zoology and Environment Sciences, University of Colombo, Sri Lanka.

*Author to whom correspondence should be addressed.


Abstract

Bird nests primarily function to protect and incubate eggs and nestlings. However, nests are also host to a broad diversity and abundance of arthropod associates, primarily mites (Acari). Our knowledge of nest dwelling mites of common bird species in Sri Lanka is quite limited and necessitates further study. Five different types of nests of selected common bird species (18) in Sri Lanka in urban, suburban, wild, and captive populations were sampled opportunistically using a portable mini vacuum trap. ANOVA: single factor test was used to evaluate statistical significance at p<0.05. A total of 1493 mites were collected from 180 nests. The mites belonging to order Mesostigmata had the highest relative abundance (58.6%) and prevalence (74.4%) of all mite orders collected, followed by the Sarcoptiformes (41.1%, 72.8%), and Trombidiformes (0.3%, 2.2%). Mite diversity of host bird species was measured using the Shannon-Weiner diversity index (H’). Pycnonotus cafer nests had the highest diversity of mites. Cup-shaped nests were host to the highest average abundance value (13.4) of mites, while cavity nests had the lowest value (5.7). Nests from captive populations had the highest average abundance (24.6) of mites and the nests of suburban populations had the lowest value (7.2). These findings can be used as a baseline data set for further detailed research studies on nest-dwelling mites of birds, focusing on avifaunal conservation and the impact on human health by nest-dwelling ectoparasites, built-in human habitations in Sri Lanka.

Keywords: Nest-dwelling mites, bird nests, mesostigmata, sarcoptiformes, oribatida, trombidiformes


How to Cite

Kulatunga , V. S., Knee , W., Perera , I. C., & Dayawansa , P. N. (2023). Nest-dwelling Mites of Selected Common Bird Species in Sri Lanka. Asian Journal of Research in Zoology, 6(3), 26–35. https://doi.org/10.9734/ajriz/2023/v6i3113

Downloads

Download data is not yet available.

References

Cantarero A, López-Arrabé J, Rodríguez-García V, González-Braojos S, Redondo AJ, Moreno J. Factors affecting the presence and abundance of generalist ectoparasites in nests of three sympatric hole-nesting bird species. Acta Ornithologica. 2013;48(1):39-54.

Peters HS. Ectoparasites and bird-banding. Bird-Banding. 1930;1(2):51-60.

Proctor H, Owens I. Mites and birds: diversity, parasitism and coevolution. Trends in ecology & evolution. 2000;15(9):358-364.

Sikes RK, Chamberlain RW. Laboratory observations on three species of bird mites. Journal of Parasitology. 1954;40(6).

Rendell WB, Verbeek NA. Are avian ectoparasites more numerous in nest boxes with old nest material. Canadian Journal of Zoology. 1996;74(10):1819-1825.

Hansell M. Bird nests and construction behaviour. Cambridge University Press; 2000.

Loye JE. The life history and ecology of the cliff swallow bug Oeciacus vicarius (Hemiptera: Cimicidae). Cahiers ORSTOM. Série Entomologie Médicale et Parasitologie. 1985;23(2):133-139.

Denmark HA, Cromroy HL. Tropical Fowl Mite, Ornithonyssus bursa (Berlese) (Arachnida: Acari: Macronyssidae). Fact Sheet EENY. 2012;297.

Colloff M. Dust mites. Vol. 29. Dordrecht: Springer; 2009.

Matis JH, Kiffe TR. Predicting the africanized bee invasion. statistics. A guide to the unknown, fitting cumula ti ve size mechanistic models to insect population data. 2005;1(5):5.

Gannon MR, Willig MR. Ecology of ectoparasites from tropical bats. Environmental entomology. 1995;24(6):1495-1503.

Mašán P, Fenďa P, Krištofík J, Halliday B. A review of the ectoparasitic mites (Acari: Dermanyssoidea) associated with birds and their nests in Slovakia, with notes on identification of some species. Zootaxa. 2014;3893(1):77-100.

Mullen GR, OConnor BM. Mites (Acari). In Medical and veterinary entomology. Academic Press. 2019;533-602.

Phillis WA, Cromroy HL, Denmark HA. New host and distribution records for the mite genera Dermanyssus, Ornithonyssus and Pellonyssus (Acari: Mesostigmata: Laelapoidea) in Florida. Florida Entomologist. 1976;89-92.

Garvin MC, Scheidler LC, Cantor DG, Bell KE. Abundance and temporal distribution of Ornithonyssus sylviarum Canestrini and Fanzago (Acarina: Mesostigmata) in gray catbird (Dumatella carolinensis) nests. Journal of Vector Ecology. 2004;29:62-65.

Knee W, Proctor H. Host records for Ornithonyssus sylviarum (Mesostigmata: Macronyssidae) from birds of North America (Canada, United States, and Mexico). Journal of Medical Entomology. 2007;44(4):709-713.

Fenďa P, Schniererová E. Mites (Acarina: Mesostigmata) in the nests of Acrocephalus spp. and in neighbouring reeds. Biologia (Bratislava). 2004;59(Suppl 15):41-47.

Powlesland RG. Effects of the haematophagous mite Ornithonyssus bursa on nestling starlings in New Zealand. New Zealand Journal of Zoology. 1977;4(1):85-94.

Radovsky FJ. Revision of genera of the parasitic mite family Macronyssidae:(Mesostigmata Dermanyssoidea) of the world. Indira Publishing House; 2010.

Szabó K, Szalmás A, Liker A, Barta Z. Effects of haematophagous mites on nestling house sparrows (Passer domesticus). Acta Parasitologica. 2002;47(4):318-322.

Lindquist EE, Krantz GW, Walter DE. Order Mesostigmata. In: Krantz, G.W. & Walter, D.E. (Eds.), A Manual of Acarology 3rd Edition. Texas Tech University Press, Lubbock, USA. 2009;124–232.

Moreira GF, Moraes GJD. The potential of free-living laelapid mites (Mesostigmata: Laelapidae) as biological control agents. In Prospects for biological control of plant feeding mites and other harmful organisms, Springer, Cham. 2015;77-102.

Resh VH, Cardé RT. Encyclopedia of insects. Academic press; 2009.

Ling SJ, Wong SF, Mak JW, Ho TM. Morphology of Glycycometus malaysiensis, a domestic mite in Malaysia. Tropical Biomedicine. 2019;36(1):263-273.

Wehner K, Heethoff M, Brückner A. Seasonal fluctuation of oribatid mite communities in forest microhabitats. PeerJ. 2018;6:e4863.

Siepel H, de Ruiter-Dijkman EM. Feeding guilds of oribatid mites based on their carbohydrase activities. Soil Biology and Biochemistry. 1993;25(11):1491-1497.

OConnor BM. Astigmatid mites (Acari: Sarcoptiformes) of forensic interest. Experimental and Applied Acarology. 2009;49(1):125-133.

Hernandes FA, Skvarla MJ, Fisher JR, Dowling AP, Ochoa R, Ueckermann EA, Bauchan GR. Catalogue of snout mites (Acariformes: Bdellidae) of the world. Zootaxa. 2016;4152(1):1-83.

Manju SHARMA, Sharma RK. Breeding biology of red-vented bulbul (Pycnonotus cafer). International Journal of Zoology and Research. 2013;3(5):1-4.

Ombugadu A, Echor B, Jibril A, Angbalaga G, Lapang M, Micah E. Impact of parasites in captive birds: a review. Curr Res Environ Biodivers. 2018;2019(04):1-12.

Citino SB. Bovidae (except sheep and goats) and Antilocapridae. Zoo and Wild Animal Medicine, 5th ed. Saunders, Philadelphia, Pennsylvania. 2003;673.

Clayton DH, Koop JAH, Harbison CW, Moyer BR, Bush SE. How birds Combat Ectoparasites. The Open Ornithology Journal. 2010;3:41-71.

Winkler DW. Use and importance of feathers as nest lining in Tree Swallows (Tachycineta bicolor). The Auk. 1993; 110(1):29-36.

Fauth PT, Krementz DG, Hines JE. Ectoparasitism and the role of green nesting material in the European starling. Oecologia. 1991;88(1):22-29.

Wimberger PH. The use of green plant material in bird nests to avoid ectoparasites. The Auk. 1984;101(3):615-61.

Suárez-Rodríguez M, López-Rull I, Macías Garcia C. Incorporation of cigarette butts into nests reduces nest ectoparasite load in urban birds: new ingredients for an old recipe. Biology Letters. 2013;9(1): 20120931.