Review on the Bio-insecticidal Properties of Some Plant Secondary Metabolites: Types, Formulations, Modes of Action, Advantages and Limitations

Main Article Content

Ukoroije, Rosemary Boate
Otayor, Richard Abalis

Abstract

Bio-pesticides are biological derived agents that are usually applied in a manner similar to synthetic pesticides but achieve pest management in an environmental friendly way. Bioinsecticides have the advantages of been reportedly eco-friendly both to man and the environment, are target specific, lack problem of residue, least persistent in environment, locally available, easily processed and inexpensive, though with the limitation of requiring repeated applications for the achievement of optimal control of insect pests while enhancing crop protection. The mode of action of bioinsecticides on insects includes repellent action, antifeedant activity, oviposition deterrent properties, growth and development inhibition, toxicity, attractants, sterility and death. Hence, bioinsecticides can be included in integrated pest management programs for crop protection and insect pest control. The review on biopesticidal properties of some plant secondary metabolites in the leaves, stems, bark, fruits, flowers, cloves, rhizomes, grains and seeds of plants and their interference with the growth, feeding, reproduction of insect pestsfor pest management has been elaborated.

Keywords:
Phytochemicals, bioinsecticides oviposition, repellency.

Article Details

How to Cite
Boate, U. R., & Abalis, O. R. (2020). Review on the Bio-insecticidal Properties of Some Plant Secondary Metabolites: Types, Formulations, Modes of Action, Advantages and Limitations. Asian Journal of Research in Zoology, 3(4), 27-60. https://doi.org/10.9734/ajriz/2020/v3i430099
Section
Review Article

References

Jitendra K, Nitin K, Kulkarni DK. Plant-based pesticides for control of Helicoverpa armigera on Cucumis; Asian Agricultural History. 2009;13(4):327-332.

Pan-Germany. Pesticide and health hazards. Facts and figures. 2013;1-16. Available:www.pangermany.org/download/Vergift_EN-201112-web.pdf (Accessed on 14 October 2013)

Regnault-Roger C, Vincent C, Arnason JT. Essential oils in insect control: Low-risk products in a high-stakes world. Annual Review of Entomology. 2012;57:405– 424.

Pimentel D. Environmental and economic costs of the application of pesticides primarily in the United States. Environment, Development and Sustainability. 2005;7:229–252.

Shelton AM, Zhao JZ, Roush RT. Economic, ecological, food safety and social consequences of the deployment of B-transgenic plants. Annual Review of Entomology. 2002;47:845-881.

Elzen GW, Hardee DD. United state department of agriculture-agricultural research on managing insect resistance to insecticides. Pest Management Science. 2003;59:770–776.

Pereira SG, Sanaveerappanavar VT, Murthy MS. Geographical variation in the susceptibility of the diamond back moth Ptlutella xylostella L. to Bacillus thuringiensis products and acylurea compounds. Pest Management. 2006;15: 26-26.

World Health Organization. Public health impacts of pesticides used in agriculture. Geneva; 1990.

Wilson C. Cost and policy implications of agricultural pollution with special reference to pesticides, PhD Thesis, Department of Economics. University of St Andrews, Scotland, U.K; 1998.

Devi IP. Pesticide use in the rice bowl of Kerala: Health costs and policy options. SANDEE Working Paper No. 21. Kathmandu, Nepal: South Asian Network for Development and Environmental Economics; 2007.

Atreya K. Health costs from short-term exposure to pesticides in Nepal. Social Science and Medicine. 2008;67:511–519.

Ajayi OC. Pesticide use practices, productivity and farmers’ health: The case of cotton-rice systems in Cote d’lvoire, West Africa. Hanover, Germany: University of Hanover. Pesticide Policy Project, Special Issue Publication Series No 3; 2000.

Maumbe BM, Swinton SM. Hidden health costs of pesticide use in Zimbabwe’s smallholder cotton growers. Social Science and Medicine. 2003;57:1559–1571.

Mondal T, Mondal D. A review on efficacy of A. indica. A Juss based biopesticides: An Indian Perspective. Research Journal of Recent Sciences. 2012;35:445-516.

Poopathi S, Archana B. Mosquitocidal bacterial toxins (Bacillus sphaericus and Bacillus thuringiensis serovar israelensis): Mode of action, cytopathological effects and mechanism of resistance. 2010;50(1): 65-71.

Regnault-Roger C, Philogène BJR. Past and current prospects for the use of botanicals and plant allelochemicals in Integrated Pest Management. Pharmaceutical Biology. 2008;46:41–52.

Sithisut D, Fields PG, Chandrapathya A. Contact toxicity, feeding reduction and repellency of essential oils from three plants from the ginger family (Zingiberaceae) and their major components against Sitophilus zeamais and Tribolium castaneum. The Journal of Stored Products. 2011;104:1445-1454.

Schmutterer H. The Neem tree. Source of unique natural products for Integrated Pest Management medicine, industry and other purposes. VCH publisher, Weinheim, New York, Bussel, Cambridge, Tokyo. 1995; 696.

Miller DM, Koehler PG. Least toxic methods of cockroach control. United States Department of Agriculture, Florida University, United States of America; 2008.

Udo IO. Efficacy of plant parts of dragon and wood-oil-nut trees against maize weevil (Sitophilus zeamais Motsch.) and cowpea weevil (Callosobruchus maculatus F.) PhD Thesis, Rivers State University of Science and Technology; 2008.

Al-Quraishy S, Abdel-Ghaffar F, Al-Rasheid KA, Mehlborn J, Mehlborn H. Effects of neem seed extract (miteshop) on mallophages (featherlings of chickens), In vivo and in vitro studies. Parasitology Research. 2012a;110:617- 622.

Okrikata E, Auaso CE. Bioefficacy of various neem dust formulation for the control of Sorghum stem borers 1n: effect on stalk and peduncle in the semi-arid zones of Nigeria. Yobe Journal of Environmental Development. 2008;1(1).

Kumar S. Biopesticides: A need for food and environmental safety. Journal of Biofertility and Biopesticides. 2012;3:4.

Adebayo TA, Gbolae AA, Olaifa JI. Comparative study of toxicity of essential oils to larvae of three mosquito species. Nigeria Journal of Natural Medicine. 1999;3:74-76.

Adeyemi MMH. The potential of secondary metabolites in plant material as deterrents against insect pests: A review. African Journal of Pure and Applied Chemistry. 2010;4(11):243-246.

Okwu DE. Evaluation of the chemical composition of Indigenous spices and flavouring agents, Global Journal of Pure and applied science. 2001;7(3):455-459.

Johnson S, Morgan ED, Peiris CN. Development of the major triterpenoids and oil in the fruits and seeds of neem Azadirachta indica. Journal of Annual Botany. 1996;78:383-388.

Nakanishi T, Suzuki M. Revision of the structure of fagaridine based on comparison of UV and NMR data of synthetic compounds. Journal of National Products. 1998;61:1263-1267.

Chattopadhyay RR, Chattopadhyay RN, Maitra SKK. Possible mechanism of anti-inflammatory activity of Azadirachta indica leaf extract. Indian Journal of Pharmacology. 1993;25:99-100.

Jood S, Kapoor AC, Singh R. Evaluation of some plant products against Trogoderma granarium (Everts) in stored wheat and their effects on nutritional composition and organoleptic characteristics of treated grains. International Journal of Pest Management. 1993;39(1):93-98.

Wink M. Production and application of phytochemicals from an agricultural perspective. In: Phytochemistry and Agiculture proceedings. Phytochemical Society of Europe. 1993;34:171-213.

Banken JAO, Stark JD. Stage and age influence on the susceptibility of Coccinella semtempuctata (Coleoptera: Coccinellidae) after direct exposure to Neemix, a neem insecticides. Journal of Economic Entomology. 1997;90:1102-1105.

Edeoga HO, Eriata DO. Alkaloids, tannins and saponins contents of some Nigeria medicinal plants. Journal of Medicinal Aromatic and Plant Science. 2001;33:344-349.

Subapriya R, Bhuvaneswari V, Ramesh V, Nagini S. Ethanolic extract of neem inhibits buccal carcinogenesis in hamsters. Cell Biochemistry and Function. 2005;23:229-238.

Evans WC. Trease and evans pharmacognosy. Rajkanal Electric press, New Delhi, India, 15th Edition. 2006;513-543.

Gbotolorun SC, Osinubi AA, Noronha CC, Okalawon AO. Antifertility potential of A. indica flower extract on adult female Sprague Dawley rats. African Health Science. 2008;8:168-173.

Madziga HA, Sanni S, Sandabe UK. Phytochemical and elemental analysis of Acalypha wilkesiana leaf. Journal of American Science. 2010;6(11):510-514.

Al-Samaraj G, Sinah H, Syarhabil. Evaluating eco-friendly botanicals and synthetic fungicides. Annual Agriculture, Environment and Medicine. 2012;19:673-676.

Al-Quraishy S, Abdel-Ghaffar F, Al-Rasheid KA, Mehlborn J, Mehlborn H. Observation on effects of neem seed extract (miteshop) on biting lice (mallophages) and blood sucking insects parasitizing horses. Parasitoogy Research. 2012a;110:335-339.

Asif M. Antimicrobial potential of A. indica against pathogenic Bacteria and Fungi. Journal of Pharmacognosy and Phytochemistry. 2012;1(4):78-83.

Mukherjee A, Sengupta S. Characterization of nimbidiol as a potent intestinal disaccharidase and glucoamylase inhibitor present in Azadirachta indica (neem) useful for the treatment of diabetes. Journal of Enzyme Inhibition, Medicine and Chemistry. 2013;28:900-910.

Hikal WM, Baeshen RS, Said-Al Ahl HA. Botanical insecticide as simple extractives for pest control. Cogent Biology. 2017;3(1): 1404274.

Neal L. Botanical insecticides. Landscape IPM, Tx 77843-2475, Texas A and M University Sytems; 2018. Available:http/landscapeipm.tamu.edu/types.

Kaehler S, Kennish R. Summer and Winter comparisons in the nutritional value of marine microalga from Hong Kong. Botanical Marina. 1996;39:11-17.

Dawes CL. Marine Botany. New York: John Wiley and Sons, Inc. 1998;480.

Vierra RF, Simon JE. Chemical characterization of ocimum gratissimum found in the market and used in traditional medicine in Brazil. Journal of Economic Botany. 2000;20:5-6.

Romero C, Vargas M. Extraccion del aceite de la semilla del neem (Azadirachta indica). Ciencia. 2005;13:464-474.

Angulo M, Gardea A, Velez R, Garcia R, Carillo A, Chaidez C, Partida J. Contenido de azadirachtina A en semillas de Nim (Azadirachta indica A. Juss.) colectadas en Sinaloa, Mexico. Fitotecnia Mexicana. 2004;27:305-311.

Ramos C, Gonzalez V, Soto M, Mark E, Rodriguez D. Variacion en contenido de azadirachtin en frutos de margosa durante su desarrollo. Revista Fitotecnia Mexicana. 2004;27:81-85.

Gonzalez R, Otero G, Villanueva J, Perez J, Soto R. Toxicidad y repelencia de Azadirachta indica contra varroa destructor (Acari: Varroidae). Agrociencia. 2006;40: 741-751.

Coombs A. Fighting Microbes with Microbes. The Scientists; 2013. Available:www.the-scientist.com

United States Environmental Protection Agency (EPA). What are Biopesticides? Office of Pesticide Programs EPA 1200 Pennsylvania Avenue, NW Washington D. C. 2017;20460. Available:www.epa.gov/ingredients-used-pesticide

David C. What are biopesticides? Warwick crop Center. The University of Warwick Wellabourne, Warwick CV 35 9ET United Kingdom; 2018.

Shapiro-Ilan DI, Cottrell TE, Jackson MA, Wood BW. Control of key pecan insect pests using biorational pesticides. Journal of Economic Entomology. 2013;106:257-266.

Le Vieux PD, Malan AP. An overview of the vine mealybug (Planococcus ficus) in South African vineyards and the use of entomopathogenic nematodes as potential biocontrol agent. South African Journal of Enology and Viticulture. 2013;34:108-118.

Zhang LW, Liu YJ, Yao J, Wang B, Huang B, Li ZZ, Sun JH. Evaluation of Beauveria bassiana (Hyphomycetes) isolates as potential agents for control of Dendroctonus valens. Insect Science. 2011;18:209-216.

Gill HK, Garg H. Pesticide: Environmental impacts and strategies. Intech Open. 2014; 187-230. Available:www.intechopen.com

Gupta S, Dikshit AK. Biopesticides: An eco-friendly approach for pest control. Journal of Biopesticides. 2010;3:186-188.

Singh B, Mandal K. Environmental impact of pesticides belonging to newer chemistry. In: Dhawan, A. K., Singh, B., Brar-Bhullar, M., Arora, R. (eds.). Integrated pest management. Scientific Publishers, Jodhpur, India. 2013;152-190.

Soltani H, Agricultural H. Efficacy of spinosad against potato Colorado beetle Leptinotarsa. Hamedan Agricultural and Natural Resources Research, Hamedan, Iran; 2011.

National Pesticide Information Center (NPIC). Plant Incorporated Protectants (PIPs) / Genetically Modified Plants; 2013.

Oppert B, Morgan TD, Kramer KJ. Efficacy of Bacillus thuringiensis Cry3Aa protoxin and protease inhibitors against Coleopteran storage pests. Pest Management Science. 2011;67:568-573.

Chang C, Yang M, Wen H, Chern J. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis. 2002;10:178–182.

Srivastava N, Chauhan AS, Sharma B. Isolation and characterization of some phytochemicals from Indian Traditional plants. Hindawi Biotechnology Research International. 2012;1-8.

Masih NG, Singh BS. Phytochemical screening of some plants used in herbal based cosmetic preparations In: Ikhemani, L., Srivastava, M and Srivastava, S. (eds.) Chemistry of phyto potatoes: health, energy and environmental perspectives. 2012;111-112. Springer, Berline, Heidelberg. ISBN: 978-3-642-23393-7.

Ajanal M, Gundkalle M, Nayak S. Estimation of total alkaloid in Chitrakadivati by UV-Spectrophotometer. Ancient Science of Life. 2012;31(4):198–201.

Mahdi-Pour B, Jothy SL, Latha LY, Chen Y, Sasidharan S. Antioxidant activity of methanol extracts of different parts of Lantana camara. Asian Pacific Journal of Tropical Biomedicine. 2012;2(12):960–965.

Turkmen N, Sari F, Velioglu YS. Effects of extraction solvents on concentration and antioxidant activity of black and black mate tea polyphenols determined by ferrous tartrate and Folin-Ciocalteu methods. Food Chemistry. 2006;99(4):835–841.

McDonald S, Prenzler PD, Antolovich M, Robards K. Phenolic content and antioxidant activity of olive extracts. Food Chemistry. 2001;73(1):73–84.

Ngo TV, Scarlett CJ, Bowyer MC, Ngo PD, Vuong QV. Impact of different extraction solvents on bioactive compounds and antioxidant capacity from the root of Salacia chinensis L. Journal of Food Quality. 2017;1-8.

Dieu-Hien T, Dinh HN, Nhat TAT, Anh VB, Tuong HD, Hoang CN. Evaluation of the Use of different solvents for phytochemical constituents, antioxidants, and In Vitro anti-Inflammatory activities of Severinia buxifolia. Hindawi Journal of Food Quality. 2019;1-8.

Ladan Z, Amuptan JO, Oyewale OA, Ayo RG, Temple E, Ladan OE. Phytochemical screening of the leaf extracts of Hyptis spicifera plant. African Journal of Pure and Applied Chemistry. 2014;8(5):83-88.

Aiyeloja AA, Bello OA. Ethnobotanical potentials of common herbs in Nigeria: A case study of Enugu State, Nigeria. Educational Research and Review. 2006; 1(1):16-22.

Idowu OA, Soniran OT, Ajana O, Aworinde DO. Ethnobotanical survey of antimalarial plants used in Ogun State, Southwest Nigeria. African Journal of Pharmacy and Pharmacology. 2010;4(2):55-60.

Landau E. "From a tree, a 'miracle' called aspirin". CNN; 2010. Retrieved 18 June 2014

Briyai F. Evaluation of efficacy of three local plants (Antidesma vestsum, Microdesma puberla and Spilanthes filicaulis) extracts for the control of ectoparasites of cultured catfish Clarias gariepinus Burchell, 1822. Ph.D thesis, Uniport; 2012.

Das K, Tiwari RKS, Shrivastava DK. Techniques for evaluation of medicinal plant products as antimicrobial agent: Current methods and future trends. Journal of Medicinal Plants Research. 2010;4(2): 104-111.

Nikhal SB, Dambe PA, Ghongade DB, Goupale DC. Hydroalcoholic extraction of Mangifera indica (leaves) by Soxhletion. International Journal of Pharmaceutical Sciences. 2010;2(1):30-32.

Ncube NS, Afolayan AJ, Okoh AI. Assessment techniques of antimicrobial properties of natural compounds of plant origin: Current methods and future trends. African Journal of Biotechnology. 2008; 7(12):1797-1806.

Banu SK, Catherine L. General techniques involved in phytochemical analysis. International Journal of Advanced Research in Chemical Science (IJARCS). 2015;2(4):25-32.

Handa SS, Khanuja SPS, Longo G, Rakesh DD. Extraction technologies for medicinal and aromatic plants. Inter-national Centre for Science and High Technology, Trieste. 2008;21-25.

Harborne JB. Phytochemical methods: A guide to modern techniques of plant analysis, 3rd edition. Chapman and Hall, London, U.K. 1998;302.

Ejikeme CM, Ezeonu CS, Eboatu AN. Determination of physical and phyto-chemical constituents of some tropical timbers indigenous to Niger Delta area of Nigeria. European Scientific Journal. 2014;10(18):247-270.

Ezeonu CS, Ejikeme CM. Qualitative and quantitative determination of phyto-chemical constituents of indigenous Nigerian softwoods. New Journal of Science. 2016;1-9.

Gupta M, Thakur S, Sharma A, Gupta S. Qualitative and quantitative analysis of phytochemical and pharmacological value of some dye yielding medicinal plants. Oriental Journal of Chemistry. 2017;29(2).

Onuah CL, Chukwuma CC, Ohanador R, Chukwu CN, Iruolarbe J. Quantitative phytochemical analysis of Annona muricata and Artocarpus heterophyllus leaves using gas chromatography- flame ionization detector. Trends in Applied Scientific Research. 2019;14(2):113- 118.

Rahman G, Syed F, Samiullah S, Nusrat J. Preliminary phytochemical screening, quantitative analysis of alkaloids and antioxidant activity of crude plant extracts from Ephedra intermedia indigenous to Balochistan. Hindawi the Scientific World Journal. 2017;1-7.

El Yahyaoui O, Ouanziz NA, Guinda I, Sammama A, Katorjouri S, Bouabed B, El Bakkali M, Quyou A, Lrhorfi LA, Bengueidor R. Phytochemical screening and thin layer chromatography of two medicinal plants: Adansonia digitata (Barbacaceae) and Acacaia raddiana (Fabaceae). Journal of Pharmacognosy and Biochemistry. 2017;6(1):10-15.

Galand N, Pothier J, Viel C. Plant drug analysis by planar chromatography. Journal of Chromatographic Science. 2002;40:1-14.

Slavika G, Brankica T. Biopesticide formulations, Possibility of Application and Future trends. Journal of Pesticide and Environmental Protection. 2013;28(2):97-102.

Tadros F. Applied surfactants, principles and applications. Wiley-VCH Verlag GmbH and Co. KGaA. 2005;187-256.

Brar SK, Verma M, Tyagi RD, Valero JR. Recent advances in downstream processing and formulations of Bacillus thuringiensis based biopesticides. Process Biochemistry. 2006;41(2):323-342.

Knowles A. Recent developments of safer formulations of agrochemicals. Environmentalist. 2008;28(1):35-44.

Knowles A. Adjuvants and additives. Agrow Reports: T & F Informa, U.K Ltd. 2006;126-129.

Knowles A. New developments in crop protection product formulation. Agrow Reports UK: T and F Informa UK Ltd. 2005;153-156.

Colovic M, Krstic B, Danijela Z, Lazarevic-Pasti, Tamara D, Bondzic Aleksandra M, Vasic Vesna M. Acetylcholinesterase Inhibitors: Pharmacology and Toxicology. Current Neuropharmacology. 2013;11(3): 315–335.

Mizubuti ES, Júnior VL, Forbes GA. Management of late blight with alternative products. Pest Technology. 2007;2:106–116.

Pugazhvendan SR, Ross PR, Elumalai K. Insecticidal and repellent activities of four indigenous medicinal plants against stored grain pest, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Asian Pacific Journal of Tropical Disease. 2012;2:S16-S20.

Lu FC. A review of the acceptable daily intakes of pesticides assessed by the world health organization. Regulatory Toxicology and Pharmacology. 1995;21: 351-364.

Don-Perdo KM. Investigation of single and joint fumigant insecticidal action of citrus peel oil components. Journal of Pest Science. 1996;46:79–84.

Moretti MDL, Sanna-Passino G, Demontis S, Bazzoni E. Essential oil formulations useful as a new tool for insect pest control. AAPS Pharmaceutical Science and Technology. 2000;3(2):13.

Koshier EL, Sedy KA. Effect of plant volatiles on the feeding and oviposition of Thrips tabaci. In R. Marullo., and L. Kound (Eds.), Thrips and Tospoviruses. Australia: CSIRO. 2001;185–187.

Jackal LEN, Inyang EE, Nwobi P. The potential for controlling post flowering pests of cowpea, Vigna unguiculata (Walp) using neem Azadirachta indica A. Juss. Tropical pest management. 1992;38:56-60.

Inyang UE. The potential threshold level. Relative abundance, life cycle and control of the Banana weevil Cosmopolites Sordidus (German) (Coleoptera; Curculionidae) on plaintain in Uyo, Akwa Ibom state, Nigeria, PhD Thesis, University of Agriculture, Umudike. 2004;295.

Tripathi AK, Prajapati V, Khanuja SPS, Kumar S. Effect of d-limonene on three stored-product beetles. Journal of Economic Entomology. 2003;96:990-995.

Simmonds MS, Stevenson PC. Effects of isoflavonoids from cicer on larvae of Heliocoverpa armigera. Journal of Chemical Ecology. 2001;27:965–977.

Perumalsamy H, Jang MJ, Kim JR, Kadarkarai M, Ahn YJ. Larvicidal activity and possible mode of action of four flavonoids and two fatty acids identified in Millettia pinnata seed toward three mosquito species. Parasites and Vectors. 2015;8:237-244.

Kordali S, Cakir A, Mavi A, Kilic H, Yildirim A. Screening of chemical composition and antifungal and antioxidant activities of the essential oils from three Turkish artemisia species. Journal of Agricultural and Food Chemistry. 2005;53:1408–1416.

Tripathi AK, Upadhyay S, Bhuiyan M, Bhattacharya PR. A review on prospects of essential oils as biopesticides in insect-pest management. Journal of Pharmoco-logical Phytotherapy. 2009;1(5):52–63.

Chaubey MK. Responses of Tribolium castaneum (Coleoptera: Tenebrionidae) and Sitophilus oryzae (Coleoptera: Curculionidae) against essential oils and pure compounds. Herba Polonica. 2012a; 58(3):33-45.

Chaubey MK. Biological effects of essential oils against rice weevil Sitophilus oryzae L. (Coleoptera: Curculionidae). Journal of Essential Oil Bearing Plants. 2012b;15:809-815.

López SB, López ML, Aragón LM, Tereschuk ML, Slanis AC, Feresin GE, Tapia AA. Composition and anti-insect activity of essential oils from Tagetes Species (Asteraceae, Helenieae) on Ceratitis capitata Wiedemann and Triatoma infestans Klug. Journal of Agricultural and Food Chemistry. 2011; 59(10):5286-5292.

Chaaban A, de Souza ALF, Martins CEN, Bertoldi FC, Molento MB. Chemical composition of the essential oil of Tagetes minuta and its activity against Cochliomyia macellaria (Diptera: Calliphoridae). European Journal of Medicinal Plants. 2017;18(1):1–10.

Min L, Jin-Jing X, Li-Jun Z, Liu Y, Xiang-Wei W, Ri-Mao H, Hai-Qun C. Insecticidal activity of Melaleuca alternifolia essential oil and RNA-sequence analysis of Sitophilus zeamais transcriptome in response to oil fumigation. PLoS One. 2016;11(12).

Sharififard M, Safdari F, Siahpoush A, Hamid H, Kassiri H. Evaluation of some plant essential oils against the brown-banded cockroach, Supella longipalpa (Blattaria: Ectobiidae): A mechanical vector of human pathogens. Journal of Arthropod-Borne Diseases. 2016;10(4):528–537.

Papachristos DP, Karamanoli K, Stamopoulos DC, Menkissoglu-Spiroudi U. The relationship between the chemical composition of three essential oils and their insecticidal activity against Acanthoscelides obtectus (Say). Pest Management Science. 2004;60:514–520.

Chogo JB, Crank G. Chemical composition and biological activity of the Tanzanian plant Ocimum suave. Journal of Natural Products. 1981;44:308–311.

Weaver DK, Dunkel FV, Ntezurubanza L, Jackson LL, Stock DT. The efficacy of linalool, a major component of freshly-milled Ocimum canum Sims (Lamiaceae), for protection against postharvest damage by certain stored product Coleopteran. Journal of Stored Products Research. 1991;27(4):213–220.

Wu Y, Guo S, Huang D, Wang C, Wei J, Li Z, Du S. Contact and repellent activities of zerumbone and its analogues from the essential oil of Zingiber zerumbet (L.) Smith against Lasioderma serricorne. Journal of Oleo Science. 2017;66(4):399-405.

Karunamoorthi K, Girmay A, Hayleeyesus SF. Mosquito repellent activity of essential oil of Ethiopian ethnomedicinal plant against Afro-tropical malarial vector Anopheles arabiensis. Journal of King Saud University of Science. 2014;26:305–310.

Tholl D. Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Current Opinion in Plant Biology. 2006;9:297-304.

Fradin MS, Day JF. Comparative efficacy of insect repellents against mosquito bites. The New England Journal of Medicine. 2002;347:13–18.

Isman MB, Machial CM. Pesticides based on plant essential oils: From traditional practice to commercialization. In: Rai, M., Carpinella MC. (Eds.), Naturally occurring bioactive compounds. Advances in Phytomedicine. 2006;3:29-44.

Bakkali F, Averbeck S, Averbeck D, Idaomar M. Biological effects of essential oils- A review. Food and Chemical Toxicology. 2008;46:446-475.

Batish DR, Singh HP, Setia N, Kaur S, Kohli RK. Chemical composition and phytotoxicity of volatile essential oils from intact and fallen leaves of Eucalyptus citriodora. Zeitschrift für Naturforschung C. 2006;61:465–471.

Lucia A, Toloza AC, Guzmán E, Ortega F, Rubio RG. Novel polymeric micelles for insect pest control: Encapsulation of essential oil monoterpenes inside a triblock copolymer shell for head lice control. Peer-Reviewed Journal. 2017;5.

Center for Disease Control & Prevention, (CDC USA). CDC adopts new repellent guidance for upcoming mosquito season; 2005. Available:http://www.cdc.gov/ncidod/dvbid/westnile/RepellentUpdates.htm

Toloza AC, Zygadlo J, Cueto GM, Biurrun F, Zerba E, Piccolo MS. Fumigant and repellent properties of essential oils and component compounds against permethrin-resistant Pediculus humanus capitis (Anoplura: Pediculidae) from Argentina. Journal of Medical Entomology. 2006;43(5):889-895.

Calderone NW, Spivak M. Plant extracts for control of the parasitic mite Varroa jacobsoni (Acari: Varroidae) in colonies of the western honey bee (Hymenoptera: Apidae). Journal of Economic Entomology. 1995;88:1211–1215.

Choi W, Lee SG, Park HM, Ahn YJ. Toxicity of plant essential oils to Tetranychus urticae (Acari: Tetranychidae) and Phytoseiulus persimilis (Acari: Phytoseiidae). Journal of Economic Entomology. 2004;97:553–558.

El-Zemity S, Hussien R, Saher F, Ahmed Z. Acaricidal activities of some essential oils and their monoterpenoidal constituents against house dust mite, Dermatophagoides pteronyssinus (Acari: Pyroglyphidae). Journal of Zheijang University Science B. 2006;7:957–962.

Chagas ACS, Passos WM, Prates HT, Leitem RC, Furlong J, Fortes ICP. Acaricide effect of Eucalyptus specie essential oils and concentrated emulsion on Boophilus microplus. Brazilian Journal of Veterinary Research and Animal Science. 2002;39:247–253.

Gardulf A, Wohlfart I, Gustafson R. A prospective cross-over field trial shows protection of lemon eucalyptus extract against tick bites. Journal of Medical Entomology. 2004;41:1064–1067.

Pujiarti R, Fentiyanti PK. Chemical compositions and repellent activity of Eucalyptus tereticornis and Eucalyptus deglupta essential oils against Culex quinquefasciatus mosquito. Thai Journal of Pharmaceutical Sciences. 2017;41(1):19-24.

Shukla P, Vidyasgar PS, Aldosari SA, Abdel-Azim M. Antifeedant activity of three essential oils against the red palm weevil, Rhynchophorus ferrugineus. Bulletin of Insectology. 2012;65(1):71–76.

Aref SP, Valizadegan O, Farashiani ME. Eucalyptus dundasii Maiden essential oil, chemical composition and insecticidal values against Rhyzopertha dominica (F.) and Oryzaephilus surinamensis (L.). Journal of Plant Protection Research. 2015;55:35–41.

AlJabr AM, Hussain A, Rizwan-ul-Haq M, Al-Ayedh H. Toxicity of plant secondary metabolites modulating detoxification genes expression for natural red palm weevil pesticide development. Molecules. 2017;22:169.

Prowse MG, Galloway TS, Foggo A. Insecticidal activity of garlic juice in two dipteran pests. Agricultural and Forest Entomology. 2006;8:1-6.

Zhao NN, Zhang H, Zhang XC, Luan XB, Zhou C, Liu QZ, Liu ZL. Evaluation of acute toxicity of essential oil of garlic (Allium sativum) and its selected major constituent compounds against over-wintering Cacopsylla chinensis (Hemiptera: Psyllidae). Journal of Economic Entomology. 2013;106:1349-1354.

Ogbonna OA, Ogbonna PC, Dike MC. Phytochemical screening and quantitative estimates of bioactive compounds in Spondus mombin and Azadirachta indica. Research Journal of Chemical Sciences. 2016;6(1):38-40.

David JP, Rey D, Pautou MP, Meyran JC. Differential toxicity of leaf litter to dipteran larvae of mosquito developmental sites. Journal of Invertebrate Pathology. 2000; 75:9-18.

Syofuna A, Banana AY, Nakabonge G. Efficiency of natural wood extractives as wood preservatives against termite attack. Maderas Ciencia Technoligia. 2012;14(2): 155-163.

Barbehenn RV, Peter CC. Tannin in plant-herbivore interactions: Phytochemistry. Pubmed Laboratory. 2011;72(139):1551-1565.

Cowann MM. Plant products as antimicrobial agents. Clinical Microbiology Review. 1999;12(4):564-582.

World Health Organization (WHO). Quality control methods for medicinal plant materials. Geneva. 1998;10-46.

Schmutterer H. Properties and potential of natural pesticides from the neem tree, Azadirachta indica. Annual Review of Entomology. 1990;35:271-297.

Bottenberg H, Sing BB. Effect of neem leaf applied using the “broom” method on cowpea pests and yield. International Journal of Pest Management. 1996;42(3): 207-209.

Obeng-Ofori D, Reichmuth CH, Bekele AJ, Hassanali A. Toxicity and protectant potential of camphor a major component of essential oil of Ocimum kilmandscharicium against four stored product beetles. International Journal of Pest Management. 1998;44(4):203-209.

Srivastava S, Gupta KC, Agrawal A. Effect of plant products on Callosobruchus chinensis infection on red grain. Seed Research. 1998;16(1):98-101.

Wongo LE. Biological activity of sorghum tannin extracts on the stored grain pests of Sitophilus oryzae (L), Sitotroga cerealella (Olivier) and Tribolium castaneum (Herbst). Insect Science and its Application. 1998;18:17-23.

Loko LY, Alagbe O, Dannon EA, Datinon B, Orobiyi A, Thomas-Odjo A, Tamò M. Repellent effect and insecticidal activities of Bridelia ferruginea, Blighia sapida, and Khaya senegalensis leaves powders and extracts against Dinoderus porcellus in infested dried yam chips. Psyche. 2017;1-18.

Silvateam. San Michele Mondovi (n-Italy); 2020. Available:www.silvateam.com

Lambou G, Guissou IP. Phytochemical composition and insecticidal effects of aqueous spice extracts on insects of green beans (Phaseolus vulgaris) in Burkina Faso. Tropicultura. 2011;29(4):212-217.

Sen S, Mesut Y, Cihat T, Ali KO. Larvicidal activities of some bark and wood extracts against wood damaging insects. Maderas Ciencia Tecnologia. 2017;19(3). ISSN: 0718-221X

Balandrin MF, Klocke JA, Wurtele ES, Bollinger WH. Natural plant chemicals: Sources of industrial and medicinal materials. Science. 1985;7(228):1154-1160.

Rathan RS. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Protection. 2010;29(9):913-920.

Eich E. Solanaceae convolvulaceae. Secondary metabolites: biosynthesis, chemotaxonomy, biological and economic significance. Springer, Alemania; 2008.

Celis A, Mendoza C, Pachon M, Cardona J, Delgado W, Cucu L. Extractos vegetales utilizados como biocontroladores con enfasis en la familia Piperacea. Una Revision Agronomia Colombiana. 2008;26: 97-106.

Lee SE. Mosquito larvicidal activity of pipernonaline, a piperidine alkaloid derived from long pepper, Piper longum. Journal of the American Mosquito Control Association. 2000;16(3):245–247.

Emam AM, Swelam ES, Megally NY. Furocoumarin and quinolone alkaloid with larvicidal and antifeedant activities isolated from Ruta chalepensis leaves. Journal of Natural Products. 2009;2:10–22.

Acheuk F, Doumandji-Mitiche B. Insecticidal activity of alkaloids extract of Pergularia tomentosa (Asclepiadaceae) against fifth instar larvae of Locusta migratoria cinerascens (Fabricius 1781) (Orthoptera: Acrididae). International Journal of Science and Advanced Technology. 2013;3(6):8–13.

Wachira SW, Omar S, Jacob JW, Wahome M, Alborn HT, Spring DR, Torto B. Toxicity of six plant extracts and two pyridine alkaloids from Ricinus communis against the malaria vector Anopheles gambiae. Parasites and Vectors. 2014;7:312.

Velu K, Elumalai D, Hemalatha P, Babu M, Janaki A, Kaleena PK. Phytochemical screening and larvicidal activity of peel extracts of Arachis hypogaea against chikungunya and malarial vectors. International Journal of Mosquito Research. 2015;2(1):1-8.

Pavela R. Inseticidal activities of some essential oil gainst larvae of Spodoptera littoralis. Fitoterapia. 2005;76(7-8):691-696.

Ayoola GA. Pytochemical screening and antioxidant activity of some selected medicinal plants used for malaria therapy in South Western Nigeria. Tropical Journal of Pharmaceutical Research. 2008;7(3): 1019-1024

Firn R. USFDA, Guidance for Industry: Evidence-Based Review System for the Scientific Evaluation of Health Claims (Firn, 2010). Oxford University Press, Oxford. Nature’s Chemicals. 2010;74-75.

Dubey VS, Bhall R, Luthra R. An overview of non- mevalonate pathway for terpenoid biosynthesis in plants. Journal of Biosciences. 2003;28:637-646.

Belles X, Martin D, Pulachs MD. The mevalonate pathway and the synthesis of Juvenile hormones in Insects. Annual Review of Entomology. 2005;50:181-199.

De Geyter E. Toxicology and mode of action of steroid and terpenoid secondary plant metabolites against economically important pest insects in Agriculture. Ph D thesis in Applied Biological Sciences, Faculty of Biological Science Engineering, Ghent University; 2012. ISBN:978-90-5989-536-2

Njihout F. Insect Hormones. Princeton University Press. 1994;267.

Jose S, Sujatha K. Antifeedant activity of different solvent extracts of Gliricidia sepium against third in star larvae of Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). International Journal of Advanced Research in Biological Sciences (IJARBS). 2017;4(4): 201–204.

Riddiford LM, Cherbas P, Truman JW. Ecdysone receptors and their biological actions. Vitamins and Hormones. 2001;60: 1-73.

Spindler KD, Przibilla S, Spindle-Bath M. Moulting hormones of arthropods: molecular mechanisms. Zoology. 2001; 103:189-201.

Truman JW, Riddiford LM. Endocrine insights into the evolution of metamor-phosis in insects. Annual Research of Entomology. 2002;47:467-500.

Lafont R. Ecdysteroids and related molecules in animals and plants. Archives of Insect Biochemistry and Physiology. 1997;35:3-20.

Dinan L, Bourne PC, Meng Y, Sarker SD, Tolentino RB, Whiting P. Assessment of natural products in the Drosophila melanogaster bile cell bioassay for ecdysteroid agonist and antagonist activities. Cellular and Molecular Life Sciences. 2001;58:321-342.

Jaberian H, Piri K, Naziri J. Phytochemical composition and invitro microbial and antioxidant activities of some medicinal plants. Food Chemistry. 2013;136:244-273.

Juaker RR, Gershoron J, Unsicker SB. Floral odour bouquet loses its ant repellent properties after inhibition of terpene biosynthesis. Journal of Chemical biosynthesis. 2011;37:1323-1331.

Bleeker PM, Diergaarde PJ, Ament K, Schütz S, Johne B, Dijkink J, et al. Tomato-produced 7-epizingiberene and R-curcumene act as repellents to whiteflies. Phytochemistry. 2011;72(1):68–73.

Rosen R, Kanakala S, Kliot A, Pakkianathan BC, Farich BA, Santana-Magal N, et al. Persistent, circulative transmission of begomoviruses by whitefly vectors. Current Opinion in Virology. 2015; 15:1–8.

Kortbeek RWJ, van der Gragt M, Bleeker PM. Endogenous plant metabolites against insects. European Journal of Plant Pathology. 2019;154:67–90.

Diwan RK, Saxena RC. Insecticidal property of flavinoid isolated from Tephrosia purpuria. International Journal of Chemical Sciences. 2010;8(2):777– 782.

Kumar SR. Modern Plant Physiology. CRC Press. 2004;457. ISBN: 9780849317149

Lancet. The devil in the dark chocolate: cocoa. Lancet. 2007;370(9605):2070. In: Chocolate as a source of tea flavonoids. Arts ICW, Hollman PCH, Kromhout D. Research Letters The Lancet. 1999; 354(9177):488.

Kubo I, Kim M. New insect growth inhibitory flavan glycosides from Viscum tuberculatum Tetrahedron. Letters. 1989; 28(9):921–924.

Simmonds MS. Flavonoid–insect interactions: Recent advances in our knowledge. Phytochemistry. 2003;64:21–30.

Mallikarjuna N, Kranthi KR, Jadhav DR, Kranthi S, Chandra S. Influence of foliar chemical compounds on the development of Spodoptera litura in interspecific derivatives of groundnut. Journal of Applied Entomology. 2004;128:321–328.

Gould KS, Lister C. Flavonoid functions in plants.CRC Press LLC, Boca Raton, Florida. Chemistry, Biochemistry and Applications. 2006;397–443.

Morimoto M, Kumeda S, Komai K. Insect antifeedant flavonoids from Gnaphalium affine. Journal of Agricultural and Food Chemistry. 2000;48:1888–1891.

Goławska S, Łukasik I, Goławski A, Kapusta I, Janda B. Alfalfa (Medicago sativa L.) apigenin glycosides and their effect on the pea aphid (Acyrthosiphon pisum). Polish Journal of Environmental Studies. 2010;19:913–920.

Goławska S, Łukasik I. Antifeedant activity of luteolin and genistein against the pea aphid. Journal of Pest Science. 2012;85: 443–450.

Goławska S, Łukasik I, Kapusta I, Janda B. Do the contents of luteolin, tricin, and chrysoeriol glycosides in alfalfa (Medicago sativa L.) affect the behavior of pea aphid (Acyrthosiphon pisum)? Polish Journal of Environmental Studies. 2012;21:1613–1619.

Wang SD, Liu W, Xue CB, Luo WC. The effects of luteolin on phenoloxidase and the growth of Spodoptera exigue (Hubner) larvae (Lap: Noctuidae). Journal of Pesticide Science. 2010;35:483-487.

Zagrobelny M, Bak S, Rasmussen AV, Jørgensen B, Naumann CM, Moller BL. Cyanogenic glucosides and plant-insect interactions. Phytochemistry. 2004;65(3): 293-306.

Sofowora A. Medicinal plants and traditional medicines in Africa. Chichester New York. John Wiley and Sons. 1993;34-36.

Al-Rajhy DH, Alahmed AM, Hussein HI, Kheir SM. Acaricidal effects of cardiac glycosides, azadirachtin and neem oil against the camel tick, Hyalomma dromedarii (Acari: Ixodidae). Pest Management Science. 2003;59(11):1250-1254.

Bowers MD, Puttick GM. Iridoid glycosides and insect feeding preferences: Gypsy moths (Lymantria dispar, Lymantriidae) and buckeyes (Junonia coenia, Nymphalidae). Ecological Entomology. 1989;14:247–256.

Dave H, Lediwane L. A review on anthraquinones isolated from Cassia species and their applications. Indian Journal of Natural Products and Resources. 2012;3:291–319.

Wimmer Z, Alexandra JF, Floro DM, Zarevúcka M, Wimmerová M, Sello G, Orsini F. Insect pest control agents: Novel chiral butanoate esters (juvenogens). Bioorganic and Medicinal Chemistry. 2007; 15(18):6037-6042.

Sodipo OA, Akani MA, Kolawole TB, Outaga AA. Saponins as an active antifungal principle in Garcinia kola Hiekel seed. Biosciences Research Community. 1991;3:171-177.

Harmatha J. Chemo- ecological role of Spirostanol saponins in the interaction between plants and animals. In: Olezsek, W. and Marston, A. (ed). Saponins in food, feedstuffs and medicinal plants. Dordrecht (NL). Kluwer Academic publications, 2000;129-141.

De Geyter E, Lambert E, Geelen D, Smugghe G. Novel advance with plant saponins as natural insecticides to control pest insects. Pest Technology. 2007;1:96-105

Adel MM, Sehnal F, Jurzysta M. Effect of alfalfa saponins on the moth Spodoptera littoralis. Journal of Chemical Ecology. 2000;26:1065- 1078.

Francis G, Kerem Z, Makkir H, Becker K. The biological action of saponin in animal systems: A Review. Journal of Nutrition. 2002;88:587-605.

Kar A. Pharmaocgnosy and Pharmaco-biotechnology (Revised-Expanded Second Edition). New Age International Limited Publishers, New Delhi. 2007;332-600.

Haridas V, Higuchi M, Jayatilake GS, Bailey D, Mujoo K, Blake ME, Arntzen CJ, Gutterman JU. Avicins, a family of triterpenoid saponins from Acacia victoriae (Bentham), inhibit activation of nuclear factor-kB by inhibiting both its nuclear localization and ability to bind DNA. Proc. Nat. Acad. Sci. USA. 2001;98:11557- 11562.

Barbosa P, Gross P, Provan GJ, Stermiz FR. Allelochemicals in foliage of unfavored tree hoss of the gypsy moth Lymantria dispar (L.) seasonal variation of saponins in Ilex opacea and identification of saponin aglycones. Journal of Chemical Ecology. 1990;16:1731- 1738.

Kreuger B, Potter DA. Changes in saponin and tannins in ripening holly fruits and effects of fruit consumption on non adapted insect herbivore. Am. Midl. Nat. 1994;132:183-191.

Oleszek WA, Hoagland R, Zablotowicz E. Ecological significance of plant saponins. Pages 451-465. In: Principles and practices in plant ecology allelochemical interactions. K.M.M. Dakshini and C.L. Foy, Eds. Chemical Rubber Company Press. 1999;608.

Chaieb I. Les saponines du Cestrum parqui nature chimique implications physiologiques et potentiel bio-pesticide. Thèse de Doctorat en Sciences Agronomiques. Ecole Supérieure d’Horticulture et d’Elevage de Chott Mariem, Tunisia. 2005;157:15.

Febvay G, Bourgeois P, Kermarrec A. Antifeedants for attine ant, Acromymex octospinosus (Reich) (Hymenoptera Formicidae), in several ignam spices (Discoreaceae) cultivated in Antilla. Agronomie. 1985;5:439-444.

Potter DA, Kimmerer TW. Inhibition of herbivory on young holly leaves evidence for defensive role of saponins. Oecologia. 1989;78:322-329.

Nozzolillo C, Arnason JT, Campos F, Donskov N, Jurzysta M. Alfalfa leaf sapnins and insect resistance. Journal of Chemical Ecology. 1997;23:995-1002.

Appelbaum SW, Marco S, Birk Y. Saponins as possible factor of resistance of legume seeds to the attack of insects. Journal of Agriculture, Food and Chemistry. 1969;17:618-622.

Soule S, Guntner C, Vazquez A, Argandona V, Moyna P, Ferreira F. An aphid repellent glycoside from Solanum laxum. Phytochemistry. 2000;55:217-222.

Chaieb I, Ben Halima-Kamel M, Ben Hamouda MH. Effects of diet addition of Cestrum parqui (Solanaecae) extracts on some Lepidoptera pests: Pieris brassicae (Pieridae) et Spodoptera littoralis Boisduval (Noctuidae). Medical Facility Lanbouww. Uni. Gent. 2001;66:479-480.

Barbouche N, Hajem B, Lognay G, Ammar M. Contribution à l'étude de l'activité biologique d'extraits de feuilles de Cestrum parquii sur le criquet pèlerin Schistocera gregaria. Journal of Biotechnology, Agronomy, Sociology and Environmental Studies. 2001;5:85-90.

Prosper CB, Riccardo M, Marcello N, Lamberto T. Larvicidal activity of steroidal saponins from Dracaena arborea on Aedes albopictu. Current Pharmaceutical Biotechnology. 2016;7:999.

Pelah D, Abramovich Z, Markus A, Wiesman Z. The use of commercial saponins from Quillaja saponaria bark as a natural larvicidal agent against Aedes aegypti and Culex pipiens. Journal of Ethnopharmacology. 2002;81:407- 409.

Szczepanik M, Krystkowiak K, Jurzysta M, Bialy Z. Biological activity of saponins from Alfalfa tops and roots against Colorado potato beetle. Acta Agrobotanica. 2001;54: 235-245.

Pickett JA, Birkett MA, Logan JG. DEET repels mosquitoes. Proceedings of the National Academy of Sciences of the United States of America. Google Scholar- Scopus. 2008;105(3):13195-13196.

John Wiley and Sons, Incorporated. Wiley Online Library 1999-2008 (c); 1999.

Isman MB, Duffey SS. Toxicity of tomato phenolic compounds to the fruitworm, Heliothis zea. Entomologia Experimentalis et Applicata. 1982;31:370-376.

Johnson SD, Hargreaves AL, Brown M. Dark, bitter tasting nectar functions as a filter of flowers visitors in a bird pollinated plant. Ecology. 2006;87:2709-2716.

Movva V, Pathipati UR. Feeding-induced phenol production in Capsicum annum (L.) influences Spodoptera litura F. larval growth and physiology. Archives of Insect Biochemistry and Physiology. 2017;95(1).

Giner M, Avilla J, Balcells M, Caccia S, Smagghe G. Toxicity of allyl esters in insect cell lines and in Spodoptera littoralis larvae. Archives of Insect Biochemistry and Physiology. 2012;79(1):18–30.

Samuel M, Oliver SV, Wood OR, Coetzee M, Brooke BD. Evaluation of the toxicity and repellence of an organic fatty acids mixture (C8910) against insecticide susceptible and resistant strains of the major malaria vector Anopheles funestus Giles (Diptera: Culicidae). Parasites and Vectors. 2015;8:321.

Schmidt S, Tomasi C, Pasqualini E, Loriatti C. The biological efficacy of pear ester on the activity of Granulosis virus for codling moth. Journal of Pest Science. 2008;81: 29.

Silva VCB, Ribeiro Neto JA, Alves SN, Li LARS. Larvicidal activity of oils, fatty acids, and methyl esters from ripe and unripe fruit of Solanum lycocarpum (Solanaceae) against the vector Culex quinquefasciatus (Diptera: Culicidae). Revista da Sociedade Brasileira de Medicina Tropical. 2015; 48(5):610-613.

Mullens BA, Reifenrath WG, Butler SM. Laboratory trials of fatty acids as repellents or antifeedants against houseflies, horn flies and stable flies (Diptera: Muscidae). Pest Management Science. 2009;65(12): 1360–1366.

Yousef H, EL-Lakwah SF, EL-Sayed YA. Insecticidal activity of linoleic acid against Spodoptera littoralis (BOISD.). Egyptian Journal of Agricultural Research. 2013; 91(2):573.

Cranshaw WS. Pesticide product label for super insecticidal soap concentrate. US Insect Control: Soaps and Detergents., University of Colorado. American Rose Society; 2008.

Retrieved March 2008

United States Environmental Protection Agency (EPA). What are Biopesticides? Office of Pesticide Programs EPA 1200 Pennsylvania Avenue, NW Washington D. C. 20460; 2017. Available:www.epa.gov/ingredients-used-pesticide

Cloyd RA. Soaps and detergebts, should they be used on roses? American Rose Society; 2018. Retrieved 4 December 2019

Clements J, Groves RC, Cava J, Olson JM. Conjugated linoleic acid as a novel insecticide targeting the agricultural pest Leptinotarsa decemlineata. Plos One. 2019;14(11):e0220830.

Rey D, Pautou M, Meyran JC. Histopathological effects of tannic acid on the midgut epithelium of some aquatic Diptera larvae. Journal of Invertebrate Pathology. 1999;73:173-181.

Achio S, Ameko E, Kutsanedzie F, Alhassan S. Insecticide effects of various A. indica preparations against insects of agricultural and public health concern. International Journal of Research in Biosciences. 2012;1(2):11-19.

Kesetyaningsih TW. ). Efficacy of Annona squamosa leaf extract as an insecticide against cockroach (Periplaneta americana). In: International Conference: Research and Application on Traditional Complementary and Alternative Medicine in Health care. Surkarta. 2002; 152-156.

Martinez MJA, Lazaro RM, Del Olmo LMB, Benito PB. Anti-infectious activity in the anthemideae tribe. In: Atta-ur-Rahman (Editions.) Studies inNatural Products Chemistry. 2008;35:445-516.

Maurya R, Singh G, Yadav PP. Antiosteoporotic agents from natural sources. In: Atta-ur-Rahman (Editions.). Studies in Natural Products Chemistry. 2008;35:517-545.

Houghton PJ, Ren Y, Howse MJ. Acetylcholinesterase inhibitors from plants and fungi. Natural Product Reports. 2006; 23(2):181–199.

Mann RS, Kaufman PE. Natural product pesticides: Their development, delivery and use against insect vectors. Mini-Reviews in Organic Chemistry. 2012;9: 185–202.

Mikhaiel AA. Potential of some volatile oils in protecting packages of irradiated wheat flour against Ephestia kuheniella and Tribolium castaneum. Journal of Stored Products Research. 2011;47(4):357-364.

Sarker SD, Nahar L. Chemistry for pharmacy students. General, Organic and Natural Product Chemistry. John Wiley and Sons, England. 2007;283-359.

Kaufmann C, Briegel H. Flight performance of the malaria vectors Anopheles gambiae and Anopheles atroparous. Journal of Vector Ecology. 2004;29(1):140–153.

Rotimi OA, Chris OA, Olusola OO, Joshua R, Josiah AO. Bioefficacy of extracts of some indigenous Nigerian plants on the developmental stages of mosquito (Anopheles gambiae). Jordan Journal of Biological Sciences. 2011;4(4):237– 242.

Adedire CO, Ajayi TS. Assessment of the insecticidal proof some plant extracts as grain protectants against the maize weevil, Sitophilus zeamais Motschulsky. Nigerian Journal of Entomology. 1996;13: 93-101.

Ileke KD, Olotuah OF. Bioactivity of Anacardium occidentals and Allium sativum powders and oils extracts against cowpea bruchid, Callosobruchus maculates (Fab) (Coleoptera: Bruchidae). International Journal of Biological Science. 2012;4(1):96–103.

Enan EE. Molecular and pharmacological analysis of an octopamine receptor from American cockroach and fruit fly in response to plant essential oils. Archives of Insect Biochemistry and Physiology. 2005;59:161–171.

Priestley CM, Burgess IF, Williamson EM. Lethality of essential oil constituents towards the human louse, Pediculus humanus and its eggs. Fitoterapia. 2006;77:303-309.

Yappalla R, Nandagopal B, Thimmappa S. Botanicals as grain protectants. In: Selected Papers from the International Conference on Biopesticides 6 (ICOB6). Psyche: A Journal of Entomology. 2012;1-13.

Talukder F, Islam M, Hossain M, Rahman M, Alam M. Toxicity effects of botanicals and synthetic insecticides on Tribolium castaneum (Herbst) and Rhyzopertha dominica (F.). Bangladesh. Journal of Environmental Sciences. 2004;10(2):365-371.

Isman MB. Plant essential oils for pest and disease management. Crop Protection. 2000;19:603-609.

Kimutai A, Ngeiywa M, Mulaa M, Njagi PGN, Ingonga J, Nyamwamu LB, Ngumbi P. Repellent effects of the essential oils of Cymbopogon citratus and Tagetes minuta on the sandfly, Phlebotomus duboscqi. BMC Research Notes. 2017;10(98):10.

Rahdari T, Hamzei M. Repellency effect of essential oils of Mentha piperita, Rosmarinus officinalis and Coriandrum sativum on Tribolium confusum duval (Coleoptera: Tenebrionidae). Chemistry Research Journal. 2017;2(2):107-112.

Zhang W, Zhang Z, Chen Z, Liang J, Geng Z, Guo S, Deng Z. Chemical composition of essential oils from six Zanthoxylum species and their Repellent activities against two stored-product insects. Journal of Chemistry. 2017;1-7.

Zhu JJ, Brewer GJ, Boxler DJ, Friesen K, Taylor DB. Comparisons of antifeedancy and spatial repellency of three natural product repellents against horn flies, Haematobia irritans (Diptera: Muscidae). Pest Management Science. 2015;71:1553-1560.

Huang Y, Lam SL, Ho SH. Bioactivities of essential oils from Elletaria cardamomum (L.) Maton. against Sitophilus zeamais Motschulsky and Tribolium castaneum (Herbst). Journal of Stored Products Research. 2000;36:107–117.

De Araúyo AMN, Faroni DLR, de Oliveira JV, Navarro DMF, Barbosa DRS, Breda MO, de França SM. ). Lethal and sublethal responses of Sitophilus zeamais populations to essential oils. Journal of Pest Science. 2017;90(2):589–600.

Jayakumar M, Arivoli S, Raveen R, Tennyson S. Repellent activity and fumigant toxicity of a few plant oils against the adult rice weevil Sitophilus oryzae Linnaeus 1763 (Coleoptera: Curculionidae). Journal of Entomology and Zoology Studies. 2017;5(2):324– 335.

Hata FT, Ventura MU, Carvalho MG, Miguel AL, Souza MS, Paula MT, et al. Intercropping garlic plants reduces Tetranychus urticae in strawberry crop. Experimental and Applied Acarology. 2016;69(3):311–321.

Debra KR, Misheck D. Onion (Allium cepa) and garlic (Allium sativum) as pest control intercrops in cabbage based intercrop systems in Zimbabwe. IOSR Journal of Agriculture and Veterinary Science. 2014;7(2):13–17.

Sharaby A, Abdel-Rahman H, Moawad SS. Intercropping system for protection the potato plant from insect infestation. Ecologia Balkanica. 2015;7(1).

Sulvai F, Chaúque BJM, Macuvele DLP. Intercropping of lettuce and onion controls caterpillar thread, Agrotis ípsilon major insect pest of lettuce. Chemical and Biological Technologies in Agriculture. 2016;3(1):28.

Boeke SJ, Barnand C, Van Loon JA, Kossous DK, Van Huis A, Dicke M. Effficacy of plant extracts against the cowpea beetle, Callosobruchus maculatus. International Journal of Pest Management, 2004;50(4):251-258.

Ghavami MB, Poorrastgoo F, Taghiloo B, Mohammadi J. Repellency effect of essential oils of some native plants and synthetic repellents against human flea, Pulex irritans (Siphonaptera: Pulicidae). Journal of Arthropod-Borne Diseases. 2017;11(1):105–115.

Loko LY, Alagbe O, Dannon EA, Datinon B, Orobiyi A, Thomas-Odjo A, Tamò M. Repellent effect and insecticidal activities of Bridelia ferruginea, Blighia sapida, and Khaya senegalensis leaves powders and extracts against Dinoderus porcellus in infested dried yam chips. Psyche. 2017;1-18.

Chaudhary S, Kanwar RK, Sehgal A, Cahill DM, Barrow CJ, Sehgal R, Kanwar JR. Progress on Azadirachta indica based biopesticides in replacing synthetic toxic pesticides. Frontiers in Plant Science. 2017;8:610.

Ghoneim K, Hamadah K. Antifeedant activity and detrimental effect of Nimbecidine (0.03% Azadirachtin) on the nutritional performance of Egyptian cotton leafworm Spodoptera littoralis Boisd. (Noctuidae: Lepidoptera). Biological Bulletin. 2017;31:39–55.

Isman MB. Neem and other botanical insecticides: Barriers to commercialization. Phytoparasitica. 1997;25(4):339-344.

Bekele D, Asfaw Z, Petros B, Tekie H. Ethnobotanical study of plants used for protection against insect bite and for the treatment of livestock health problems in rural areas of Akaki District, Eastern Shewa, Ethiopia. Topical Journal of Herbal Medicine. 1994;1:40-52.

Ukoroije RB, Abowei JFN, Otayor RO. The efficacy of Azadirachta indica leaf powder and ethanol extract on adult Periplaneta americana under laboratory condition. Open Access Library Journal. 2018a;5: e4454.

Padin SB, Fuse C, Urrutia MI, DalBello GM. Toxicity and repellency of nine medicinal plants against Tribolium castaneum in stored wheat. Bulletin of Insectology. 2013;66(1):45–49.

Bekele AJ, Obeng-Ofori D, Hassanali A. Evaluation of Ocimum suave (Willo) as a source of repellents, toxicants and protectants against three stored products insect pests. International Journal of Pest Management. 1996;43(2):139-142.

Waliwitiya R, Kennedy C, Lowenberger C. Larvicidal and oviposition altering activity of monoterpenoids, trans-anethole and rosemary oil to the yellow fever mosquito Aedes aegypti (Diptera: Culicidae). Pest Management Science. 2008;65(3):241–248.

Abdelgaleil S, Mohamed M, Badawy M, El-Arami S. Fumigant and contact toxicities of monoterpenes to Sitophilus oryzae (L.) and Tribolium castaneum (Herbst) and their inhibitory effects on acetylcholinesterase activity. Journal of Chemical Ecology. 2009;35:518–525.

Nerio LS, Olivero-Verbel J, Stashenko E. Repellency activity of essential oils from seven aromatic plants grown in Colombia against Sitophilus zeamais Motschulsky (Coleoptera). Journal of Stored Products Research. 2009;45:212-214.

Trivedi A, Nayak N, Kumar J. Fumigant toxicity study of different essential oils against stored grain pest Callosobruchus chinensis. Journal of Pharmacognosy and Phytochemistry. 2017;6(4):1708- 1711.

Lucia A, Toloza AC, Guzmán E, Ortega F, Rubio RG. Novel polymeric micelles for insect pest control: Encapsulation of essential oil monoterpenes inside a triblock copolymer shell for head lice control. Peer-Reviewed Journal. 2017;5.

Bouguerra N, Djebbar FT, Soltani N. Algerian Thymus vulgaris essential oil: Chemical composition and larvicidal activity against the mosquito Culex pipiens. International Journal of Mosquito Research. 2017;4(1):37-42.

Park J, Jeon Y, Lee C, Chung N, Lee H. Insecticidal toxicities of carvacrol and thymol derived from Thymus vulgaris Lin. against Pochazia shantungensis Chou and Lu, newly recorded pest. Scientific Reports 2017;4(9):2.

Regnault-Roger C, Hamraoui A. Influence d’huiles essentielles sur Acanthoscelides obtectus Say, bruche du haricot. Acta Botanica Gallica. 1993;140:217-222.

Lee BH, Lee SE, Annis PC, Pratt SJ, Park BS, Tumaalii F. Fumigant toxicity of essential oils and Monoterpenes against the red flour beetle, Tribolium castaneum Herbst. Journal of Asia-Pacific Entomology. 2002;5(2):237–240.

Negahban M, Moharramipour S, Sefidkon F. Fumigant toxicity of essential oil from Artemisia sieberi Besser against three stored product insects. Journal of Stored Products Research. 2007;43(2):123–128.

Hollingworth R, Ahammadsahib K, Gadelhak G, McLaughlin J. New inhibitors of complex I of the mitochondrial electron transport chain with activity as pesticides. Biochemical Society Transactions. 1994; 22(1):230–233.

Isman MB. Botanical insecticides, deterrents and repellents in modern agriculture and an increasingly regulated world. Annual Review of Entomology. 2006;51:45-66.

Qari SH, Nilly AH, Abdel-Fattah AH, Shehawy AA. Assessment of DNA damage and biochemical responses in Rhyzopertha dominica exposed to some plant volatile oils. Journal of Pharmacology and Toxicology. 2017;12:87–96.

Chu SS, Liu SL, Jiang GH, Liu ZL. Composition and toxicity of essential oil of Illicium simonsii Maxim (Illiciaceae) fruit against the maize weevils. Records of Natural Products. 2010;4:205– 210.

Liu ZH, Ho SH. Bioactivity of essential oil extracted from Evodia rutracurpa (Hook F. and Thomas) against the grain storage insects, Sitophilus zeamais (Motsch.) and Tribolium castaneum (Herbst.). Journal of Stored Products Research. 1999;35: 317–328.

El-Nahal AKM, Schmidt GH, Risha EM. Vapours of Acorus calamus oil – A space treatment for stored-product insects. Journal of Stored Products Research. 1989;25:211–216.

Bounoua-Fraoucene S, Kellouche A, Debras JF. Toxicity of four essential oils against two insect pests of stored grains, Rhyzopertha dominica (Coleoptera: Bostrychidae) and Sitophilus oryzae (Coleoptera: Curculionidae). African Entomology. 2019;27(2):344-359.

Al-Khayyat MZ. In silico screening for inhibitors targeting bacterial shikimate kinase. Jordan Journal of Biological Sciences (JJBS). 2017;10(4):4273.

Khalequzzaman M, Sultana S. Insecticidal activity of Annona squamosa I. seed extracts against the red flour beetle Tribolium castaneum Herbst. Journal of Bio-Sciences. 2006;14:107-112.

Kokila R, Nureshkumar A, Meenambigai K, Nataraj B, Abdulla S, Shanmugapriya R, Chandhirasekar K, Manikandan AT. Insecticidal and biological effects of three plant extracts tested against the dengue vector, Stegomyia agyptii (Diptera: Culicidae). Journal of Entomological an Acarological Research. 2016;48(1).

Nnamani CV, Oselebe HO, Ogbonna A. Effect of extracts of Dracaena arborea and Vitex doniana sweet on the larvae of Anopheles mosquito. Animal Research International. 2009;5(2):835-837.

Sosan MB, Adewoyin FB, Adewunmi CO. Larvicidal properties of three indigenous plant oils on the mosquito Aedes aegypti. Nigeria Journal of Natural Products and Medicine. 2001;5:30-33.

Edeoga HO, Omosun G, Uche LC. Chemical composition of Hyptis suaveolens and Ocimum gratissimum hybrids from Nigeria. African Journal of Biotechnology. 2006;5:892-895.

Hollingworth RM, Johnstone EM, Wright N. Pesticide synthesis through rational approaches. In P. S. Magee, G. K. Kohn, and J. J. Menn (Eds.), Washington, DC. American Chemical Society (ACS) Symposium Series. 1984;255:103–125.

Veal L. The potential effectiveness of essential oils as a treatment for headlice, Pediculus humanus capitis. Complementary Therapies in Nursing and Midwifery. 1996;2:97-101.

Ojebode ME, Olaiya CO, Adegbite AE, Karigidi KO, Ale TO. Efficacy of some plant extracts as storage protectants against Callosobruchus maculatus. Journal of Biotechnology and Biomaterial. 2016;6: 217.

Ukoroije RB, Bawo DS. Biocidal activity of leaf powder and extract of Dracaena arborea on the adult cockroach Periplaneta americana (Dictyoptera: Blatellidae). East Africa Scholars Journal of Nutrition and Food Sciences. 2019;1(5):108-114.

Udo IO, Epidi TT, Osakwe JA. Comparative efficacy of root, bark and leaf powders of Dracaena arborea for the control of two storage insect pests. Scientific Research and Essays. 2012;6(7): 1473-1478

Udo IO. Phytochemical screening of Dracaena arborea (Asparagaceae) for the control of Sitophilus zeamais (Coleoptera: Curculionidae) and Callosobruchus maculatus (Coleoptera: Chrysomelidae); 2013.

Available:researchgate.net.

Ukoroije RB, Bobmanuel RB. Insecticidal activity of leaf powder and ethanolic extracts of Azadirachta indica, Ocimum gratissimum and Dracaena arborea against nymphs of the domestic pest Periplaneta americana (Dictyoptera: Blatellidae). Noble International Journal of Scientific Research. 2019;3(12):117-135.

Ukoroije RB, Abowei JFN, Otayor RO. The efficacy of Ocimum gratissimum leaf powder and ethanol extract on adult Periplaneta americana under laboratory condition. Open Access Library Journal. 2018b;5:e4455.

Koul O, Waliai S, Dhaliwal GS. Essential oils as green pesticides: Potential and constraints. Biopesticides International. 2008;4(1):63–84.

Rajasekaran B, Kumaraswami T. Studies on increasing the efficacy of neem seed kernel extract in behavioural and psychological approaches in pest management, Regupathy A. and Jayaray S., Eds., Khedi and Village Industries commission, Pane, India. 1985;29-30.

Kraiss H, Cullen EM. Insect growth regulator effects of azadirachtin and neem oil on survivorship, development and fecundity of Aphis glycines (Homoptera: Aphididae) and its predator, Harmonia axyridis (Coleoptera: Coccinellidae). Pest Management Science. 2008;64(6):660–668.

Shaalan EAS, Canyon D, Younes MWF, Abdel-wahab H, Mansour AH. A review of Botanical phytochemical with mosquitocidal potential. Environment International. 2005; 31(8):1149-1166.

Mordue (Luntz) AJ, Nisbet AJ. Azadirachtin from the Neem tree Azadirachta indica: Its action against insects. Anais da sociedade Entomologica de Brasil. 2000;29:615-632.

Jackal LEN, Inyang EE, Nwobi P. The potential for controlling post flowering pests of cowpea, Vigna unguiculata (Walp) using neem Azadirachta indica A. Juss. Tropical pest management. 1992;38:56-60.

Okunji CO, Iwu MMJ, Jackson JE, Tally JD. Biological activity of saponins from two Dracaena species. Adv.anced Experiment and Medicinal Biology. 1996;404:415-28.

Tanzubil PB. Control of some insect pests of cowpea Vigna unguiculata with neem (Azadiractita indica A. Juss) in Northern Ghana. Tropical Pest Management. 1991;37:216-217.

Musabyimana T, Saxena RC, Kairu EW, Ogol CPKO, Khan ZR. Effects of neem seed derivatives on behavioral and physiological responses of the Cosmopolites sordidus (Coleoptera: Curculionidae). Journal of Economic Entomology. 2001;94(2):449-454.

Elango G, Rahuman AA, Bagavan A, Kamaraj C, Zahir AA, Venkatesan C. Laboratory study on larvicidal activity of indigenous plant extracts against Anopheles subpictus and Culex tritaeniorhynchus. Parasitology Research. 2009;104(6):1381–1388.

Dhar R, Dawar P, Garg S, Basir SE, Talwar GP. Effects of volatiles from neem and other natural products on gonotrophic cycle and oviposition of Anopheles stephensi and A. culicifacies. Journal of Medical Entomology. 1996;33:195-201.

Srikanth R. A brief overview of natural cockroach repellents; 2014. Available:Dengarden.compest control.

Morrison NI, Franz G, Koukidou M, Miller TA, Saccone G, Alphey LS, Polito LC. Genetic improvements to the sterile insect technique for agricultural pests. Asia-Pacific Journal of Molecular Biology and Biotechnology. 2010;18(2):275– 295.

Wilke ABB, Nimmo DD, John O, Kojin BB, Capurro ML, Marrelli MT. Mini-review: Genetic enhancements to the sterile insect technique to control mosquito populations. Asia-Pacific Journal of Molecular Biology and Biotechnology. 2009;17(3):65-74.

Navarro-Llopis V, Vacas S, Sanchis J, Primo J, Alfaro C. Chemosterilant bait stations coupled with sterile insect technique: An integrated strategy to control the mediterranean fruit fly (Diptera: Tephritidae). Journal of Economic Entomology. 2011;104(5):1647-1655.

Asawalam E, Adesiyan S. Potential of Ocimum basilicum (Linn) for the control of maize weevil Sitophilus zeamais (Motsch). Nigeria Agricultural Journal. 2001;32(1): 195-201.

Beltran-Campos VM, Silva-Vera ML, Garcia-Campos, Diaz-Cintra S. Effects of morphine on brain plasticity. Neurologia. 2015;30:176-180.

Arora R, Singh B, Dhawan AK. Theory and Practice of Integrated Pest Management. Jodhpur, Scientific Publishers; 2012.

Landis DA, Wratten SD, Gurr GM. Habitat management to conserve natural enemies of arthropod pests in Agriculture. Annual Review of Entomology. 2000;45(1):175–201.

Jacobson M. Botanical pesticides: Past, present and future, in Insecticides of Plant Origin, J. J. Arnason, B. R. Philogen, and P. Morand, Eds., Washington, DC, USA. ACS Symposium Series. 1989;387:1–10.

Bekele AJ, Obeng-Ofori D, Hassanali A. Evaluation of Ocimum suave (Willo) as a source of repellents, toxicants and protectants against three stored products insect pests. International Journal of Pest Management. 1996;43(2):139-142.

Dawit KZ, Bekelle J. Evaluation of Orange peel Citrus sinensis (L) as a source of Repellent, toxicant and protectant against Zabrotes subfasciatus (Coleoptera: Bruchidae). Momon