Atrophy and Muscular Fibrosis of Unknown Etiology during the Raising of Xiphophorus maculattus on an Ornamental Fish Farm

Main Article Content

L. A. Romano
A. F. F. de Medeiros
V. F. Pedrosa


During the last two decades, the implementation of histochemical, immunohistochemical, electron microscopy, and recently developed molecular techniques has greatly contributed to our knowledge of skeletal muscle, both normal and sick. This article reports the presence of muscular atrophy and fibrosis in Xiphophorus maculatus from an ornamental fish farm. We do not know the origin of this muscular pathology and the purpose of this work is to summarize some of the findings with optical microscopy and electron microscopy shared by all. Although we cannot establish the etiology of this atrophy, we will try to correlate the ultrastructural alterations with the muscular histopathology. Muscular atrophy is a pathology characterized by loss of normal muscle mass. It is caused by a decrease in the total number of muscle cells or by a substantial reduction in the substance of individual muscle cells. It is likely that the cases reported here represent a pathology involving causes concurrent with nutritional problems and disorders of muscle innervation. Therefore, future studies should investigate further about the potential of neurodegenerative disorders. Several experimental models can use muscular atrophy and are suitable for investigations of the underlying mechanisms of this pathology.

Atrophy, electron microscopy, fibrosis, fish, histopathology, muscle.

Article Details

How to Cite
Romano, L. A., Medeiros, A. F. F. de, & Pedrosa, V. F. (2020). Atrophy and Muscular Fibrosis of Unknown Etiology during the Raising of Xiphophorus maculattus on an Ornamental Fish Farm. Asian Journal of Research in Zoology, 3(4), 75-84.
Original Research Article


Feng X, Naz F, Juan AH, Dell'Orso S, Sartorelli V. Identification of skeletal muscle satellite cells by immunofluorescence with pax7 and Laminin Antibodies. J Vis Exp. 2018;134: 572-512. DOI: 10.3791/57212

Stuelsatz P, Keire P, Yablonka-Reuveni Z. Isolation, culture, and immunostaining of skeletal muscle myofibers from wildtype and nestin-GFP mice as a means to analyze satellite cell [published correction appears in Methods Mol Biol. 2017;1556:E1]. Methods Mol Biol. 2017;1556:51-102. DOI: 10.1007/978-1-4939-6771-1_

Beardall CH, Johnston IA. Muscle atrophy during starvation in a marine teleost. Eur J Cell Biol. 1983;29(2):209-217.

Widrick JJ, Alexander MS, Sanchez B. Muscle dysfunction in a zebrafish model of duchenne muscular dystrophy. Physiol Genomics. 2018;48(11):850-860. DOI:10.1152/physiolgenomics.00088.2016

Quan D. Muscular dystrophies and neurologic diseases that present as myopathy. Rheum Dis Clin North Am. 2011;37(2):233-244. DOI: 10.1016/j.rdc.2011.01.006

Schara U, Mortier W. Neuromuskuläre Erkrankungen (NME) [Neuromuscular diseases 2: Muscular dystrophies (MD)]. Nervenarzt. 2005;76(2):219-239. DOI: 10.1007/s00115-004-1847-8

Goebel HH, Stenzel W. Practical application of electron microscopy to neuromuscular diseases. Ultrastruct Pathol. 2013;37(1):15-18. DOI: 10.3109/01913123.2012.670045

Alturkistani HA, Tashkandi FM, Mohammedsaleh ZM. Histological stains: A literature review and case study. Glob J Health Sci. 2015;8(3):72-79 DOI: 10.5539/gjhs.v8n3p72

Luchini L, Wick G, Romano LA. The ultrastructure of secretory cells of the islets of langerhans in South American catfish rhamdia quelen. Journal of Histology. 2015;1-6. DOI: 10.1155/2015/686571

Terry RL, Wells DJ. Histopathological evaluation of skeletal muscle with specific reference to mouse models of muscular dystrophy. Curr Protoc Mouse Biol. 2016;6(4):343-363. DOI: 10.1002/cpmo.19

Allenbach Y, Benveniste O, Goebel HH, Stenzel W. Integrated classification of inflammatory myopathies. Neuropathol Appl Neurobiol. 2017;43:62-81. DOI: 10.1111/nan.12380

Cai C, Anthony DC, Pytel P. A pattern-based approach to the interpretation of skeletal muscle biopsies. Mod Pathol. 2019;32(4):462-483. DOI: 10.1038/s41379-018-0164-x

Troyanov Y, Targoff IN, Tremblay JL, Goulet JR, Raymond Y, Senecal JL. Novel classification of idiopathic inflammatory myopathies based on overlap syndrome features and auto- antibodies: Analysis of 100 French Canadian patients. Medicine. 2005;84:231-49. DOI:10.1097/

De Bleecker JL, De Paepe B, Aronica E, de Visser M, Amato A, Aronica E,et al. 205th ENMC International Workshop : Pathology diagnosis of idiopathic inflammatory myopathies part II 28- 30 March 2014, Naarden, The Netherlands. Neuromuscul Dis- ord. 2015;25:268-72. DOI: 10.1016/j.nmd.2014.12.001

Urso ML. Difuse atrophy of human skeletal muscle: cell signaling and potential interventions. Med Sci Sports Exerc. 2009;41(10):1860-1868. DOI: 10.1249/MSS.0b013e3181a6458a

Ding S, Dai Q, Huang H, Xu Y, Zhong C. An overview of muscle atrophy. Adv Exp Med Biol. 2018;1088:3-19. DOI: 10.1007/978-981-13-1435-3_1

Mawdesley- Thomas LE, Bucke D. Tissue repair in a poikilothermic vertebrate: A preliminary study. J. Fish Biol. 1973;5:115-119. DOI:

Mawdesley- Thomas LE. Some Diseases of Muscle. In: Ribelin WE, Migaki G (Eds.), The Pathology of Fishes University of Wisconsin Press, Wiscosin USA. 1975;343-363.

Roberts RJ, McQueen A, Shearer WM, Young H. The histopathology of salmon tagging. I. The tagging lesion in newly tagged parr. J. Fish Biol. 1973;5:497- 503. DOI:

Roberts RJ, McQueen A, Shearer WM, Young H. The histopathology of salmon tagging. 2. The chronic tagging lesion in returning adult fish. J. Fish Biol. 1973;5:615-619. DOI:

Timur M, Roberts RJ, McQueen A. Carrageenin granuloma in the plaice (Pleuronectes platessa); A histological study of chronic inflammation in a teleost fish. J. comp. Path. 1977;87:89-96. DOI:

Timur G, Roberts RJ, McQueen A. The experimental pathogenesis of focal tuberculosis in the plaice (Pleuronectes platessa L.). J. comp. Path. 1977;87:83-7. DOI: 10.1016/0021-9975(77)90082-2

Ferguson HW, Roberts RH, Richards RH, Collins RO, Rice DA. Severe degenerative cardiomyopathy associated with pancreas disease in Atlantic salmon, Salmo salar. J. Fish Dis. 1986;20:95-8. DOI:

Roberts RJ. The Pathophysiology and Systematic Pathology of Teleosts. In Fish Pathology (4th ed.). Wiley- Blackwell, London. 2012;62-143.

Ferguson HW. Systemic pathology of fish: A text and atlas of comparative tissue responses in diseases of teleosts Iowa State University Press: Ames; 1989;263 .ISBN : 0813801478

Betancor MB, Izquierdo M, Terova G, Preziosa E, Saleh R, Montero D, Hernández-Cruz CM, Caballero MJ. Physiological pathways involved in nutritional muscle dystrophy and healing in European sea bass (Dicentrarchus labrax) larvae. Comp Biochem Physiol A Mol Integr Physiol. 2013;164(2):399-409. DOI: 10.1016/j.cbpa.2012.11.017

Nilsen H, Johansen R, Colquhoun DJ, Kaada I, Bottolfsen K, Vågnes O, Olsen AB. Flavobacterium psychrophilum associated with septicaemia and necrotic myositis in Atlantic salmon Salmo salar: a case report. Dis Aquat Organ. 2011;97(1)37-46. DOI: 10.3354/dao02390

Uezumi A, Ito T, Morikawa D, Shimizu N, Yoneda T, Segawa M, Yamaguchi M, Ogawa R, Matev MM, Miyagoe-Suzuki Y, Takeda S, Tsujikawa K, Tsuchida K, Yamamoto H, Fukada S. Fibrosis and adipogenesis originate from a common mesenchymal progenitor in skeletal muscle. J Cell Sci. 2011;124:3654-3664. DOI: 10.1242/jcs.086629

Fanzani A, Conraads VM, Penna F, Martinet W. Molecular and celular mechanisms of skeletal muscle atrophy: an update. J. Cachexia Sarcopenia Muscle 2012;3:163-179. DOI: 10.1007/s13539-012-0074-6

Bongers KS, Fox DK, Ebert SM, Kunkel SD, Dyle MC, Bullard SA, et al. Skeletal muscle denervation causes skeletal muscle atrophy through a pathway that involves both Gadd45a and HDAC4. Am J Physiol Endocrinol Metab. 2013;305:E907-E915. DOI: 10.1152/ajpendo.00380.2013

Wei C, Stock L, Schneider-Gold C, Sommer C, Timchenko NA, Timchenko L. Reduction of Cellular Nucleic Acid Binding Protein Encoded by a Myotonic Dystrophy Type 2 Gene Causes Muscle Atrophy. Mol Cell Biol. 2018;38(14): e00649-17. DOI: 10.1128/MCB.00649-17

Rossor AM, Sleigh JN, Groves M, Muntoni F, Reilly M, Hoogenraad CC, Schiavo G. Loss of BICD2 in muscle drives motor neuron loss in a developmental form of spinal muscular atrophy. Acta Neuropathol Commun. 2020;8(1):34. DOI: 10.1186/s40478-020-00909-6

Radaelli G, Domeneghini C, Arrighi S, Mascarello F, Veggetti A. Different putative neuromodulators are present in the nerves which distribute to the teleost skeletal muscle. Histol Histopathol. 1998;13(4):939-947. DOI: 10.14670/HH-13.939

Rowlerson A, Mascarello F, Radaelli G, Veggetti A. Differentiation and growth of muscle in the fish Sparus aurata (L): II. Hyperplastic and hypertrophic growth of lateral muscle from hatching to adult. J Muscle Res Cell Motil. 1995;16(3):223- 236. DOI: 10.1007/BF00121131

Bandmann O, Burton EA. Genetic zebrafish models of neurodegenerative diseases. Neurobiol Dis. 2010;40(1):58-65. DOI: 10.1016/j.nbd.2010.05.017

Boyd PJ, Tu WY, Shorrock HK, Groen EJN, Carter RN, Powis RA, et al. Bioenergetic status modulates motor neuron vulnerability and pathogenesis in a zebrafish model of spinal muscular atrophy. PLoS Genet. 2017;13(4): e1006744. DOI: 10.1371/journal.pgen.1006744

Khayrullin A, Smith L, Mistry D, Dukes A, Pan YA, Hamrick MW. Chronic alcohol exposure induces muscle atrophy (myopathy) in zebrafish and alters the expression of microRNAs targeting the Notch pathway in skeletal muscle. Biochem Biophys Res Commun. 2016;479(3):590-595. DOI: 10.1016/j.bbrc.2016.09.117

Mani R, Balasubramanian S, Raghunath A, Perumal E. Chronic exposure to copper oxide nanoparticles causes muscle toxicity in adult zebrafish. Environ Sci Pollut Res Int. 2020;27(22):27358-27369. DOI: 10.1007/s11356-019-06095-w

Bairuty GA, Shaw BJ, Handy RD, Henry TB. Histopathological effects of waterborne copper nanoparticles and copper sulphate on the organs of rainbow trout (Oncorhynchus mykiss). Aquat Toxicol. 2013;126:104-115. DOI: 10.1016/j.aquatox.2012.10.005